ISSN 1600-5368

Guang-Bo Che,* Chun-Bo Liu and Liang Wang

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: guangbochejl@yahoo.com

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.007 \text{ Å}$ R factor = 0.044 wR factor = 0.096 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 3 May 2006 Accepted 4 May 2006

Poly[[(2-phenyl-1*H*-1,3,7,8-tetraazacyclopenta[*I*]phenanthrene)cadmium(II)]-*µ*-benzene-1,3-dicarboxylato]

In the title compound, [Cd(m-BDC)(L)], where *m*-BDC is the benzene-1,3-dicarboxylate dianion $(C_8H_4O_4^{2^-})$ and *L* is 2-phenyl-1*H*-1,3,7,8,-tetraazacyclopenta[*I*]phenanthrene $(C_{19}-H_{12}N_4)$, the Cd^{II} atom is six-coordinated by one bidenatate *L*, one bidenatate *m*-BDC and two monodentate *m*-BDC ligands, resulting in a very distorted *cis*-CdN₂O₄ octahedral coordination geometry. The Cd^{II} atoms are bridged by the *m*-BDC ligands to form an unusual double-chain structure. In addition, neighboring double chains interact through π - π interactions, resulting in a two-dimensional network.

Comment

Coordination polymers based on metals and organic ligands have been extensively studied in recent years owing to their novel topologies and potential applications as functional materials (Eddaoudi *et al.*, 2001). As part of this effort, many coordination polymers containing 1,10-phenanthroline have been reported. One report of the related ligand 2-phenyl-1*H*-1,3,7,8,-tetraazacyclopenta[*l*]phenanthrene (C₁₉H₁₂N₄, *L*) forming a coordination polymer has appeared (Chen & Liu, 2002). We selected *m*-benzenedicarboxylic acid (C₈H₆O₄, *m*-H₂BDC) as a linker and *L* as a secondary ligand, resulting in a new coordination polymer, [Cd(*m*-BDC)(*L*)], (I).

In compound (I), the Cd^{II} atom is surrounded by two N atoms from one *L* ligand and four O atoms from three different *m*-BDC ligands – one bidentate and two monodentate (Fig. 1). The mean Cd-O and Cd-N bond lengths are 2.314 (3) and 2.361 (4) Å, respectively. The CdN₂O₄ polyhedron can be regarded as a very distorted octahedron. In particular, the O1-Cd1-O2 bond angle is highly compressed (Table 1). The C-O bond lengths of the *m*-BDC species suggest that the negative charges of the C20/O1/O2 and C21/O3/O4 carboxylate groups are largely delocalized.

The Cd^{II} atoms are bridged by the *m*-BDC ligands to form an unusual double-chain structure (Fig. 2). A two-dimensional supramolecular network is then formed through π - π stacking

© 2006 International Union of Crystallography

All rights reserved

Figure 1

The asymmetric unit of (I) and additional atoms to complete the Cd coordination, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). Atoms O3A and O4A are generated by the symmetry operations $(x, -1 - y, \frac{1}{2} + z)$ and (-x, -1 - y, 1 - z), respectively.

A view of the double-chain structure of (I). H atoms have been omitted.

interactions between adjacent L ligands (Fig. 3). The π - π stacking distances range between 3.56 and 3.63 Å. Clearly, these aromatic–aromatic interactions help stabilize the present structure in a similar way to previously reported structures (Noveron *et al.*, 2002).

Experimental

The ligand L was synthesized according to the literature method (Steck & Day, 1943). A methanol solution (10 ml) of L (0.5 mmol) was added slowly to an aqueous solution (10 ml) of $CdCl_2 \cdot 2H_2O$ (0.5 mmol) and m-H₂BDC (1 mmol) with stirring at 353 K. The resulting solution was filtered and the filtrate was allowed to stand in air at room temperature for two weeks, yielding pale-yellow crystals of (I) (79% yield based on Cd).

Crystal data

$\begin{bmatrix} Cd(C_8H_4O_4)(C_{19}H_{12}N_4) \end{bmatrix}$ $M_r = 572.84$ Monoclinic, $C2/c$ a = 15.254 (3) Å b = 16.018 (3) Å c = 19.069 (4) Å $\beta = 109.56$ (3)° V = 4390.4 (17) Å ³	Z = 8 $D_x = 1.733 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 1.04 \text{ mm}^{-1}$ T = 292 (2) K Block, pale-yellow $0.35 \times 0.29 \times 0.24 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID	20840 measured reflections

diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.687, T_{\max} = 0.785$ 20840 measured reflections 4968 independent reflections 3217 reflections with $I > 2\sigma(I)$ $R_{int} = 0.085$ $\theta_{max} = 27.5^{\circ}$

Figure 3

A view of the two-dimensional superamolecular structure of (I), formed through π - π interactions. H atoms have been omitted.

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_0^2) + (0.0399P)^2]$
$vR(F^2) = 0.096$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
1968 reflections	$\Delta \rho_{\rm max} = 1.12 \text{ e } \text{\AA}^{-3}$
325 parameters	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cd1-N1	2.372 (4)	Cd1-O4 ⁱⁱ	2.260 (3)
Cd1-N2	2.349 (4)	C20-O1	1.262 (5)
Cd1-O1	2.397 (3)	C20-O2	1.253 (5)
Cd1-O2	2.377 (3)	C21-O3	1.262 (5)
Cd1-O3 ⁱ	2.222 (3)	C21-O4	1.247 (5)
N2-Cd1-N1	70.29 (12)	O2-Cd1-O1	54.77 (10)
	1 1 (")		

Symmetry codes: (i) $x, -y - 1, z + \frac{1}{2}$; (ii) -x, -y - 1, -z + 1.

All H atoms were positioned geometrically (N–H = 0.86 Å and C–H = 0.93 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(carrier)$. The highest residual density peak is located 0.99 Å from atom H2.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXTL-Plus*.

The authors thank Jilin Normal University for supporting this work.

References

Chen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811-4817.

- Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.
- Higashi, A. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Noveron, J. C., Lah, M. S., Sesto, R. E. D., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613–6625.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Góttingen, Germany.

Steck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452-456.